Vaccination with Human Papillomavirus Pseudovirus-Encapsidated Plasmids Targeted to Skin Using Microneedles
نویسندگان
چکیده
Human papilloma virus-like particles (HPV VLP) serve as the basis of the current licensed vaccines for HPV. We have previously shown that encapsidation of DNA expressing the model antigen M/M2 from respiratory syncytial virus (RSV) in HPV pseudovirions (PsV) is immunogenic when delivered intravaginally. Because the HPV capsids confer tropism for basal epithelium, they represent attractive carriers for vaccination targeted to the skin using microneedles. In this study we asked: 1) whether HPV16 VLP administered by microneedles could induce protective immune responses to HPV16 and 2) whether HPV16 PsV-encapsidated plasmids delivered by microneedles could elicit immune responses to both HPV and the antigen delivered by the transgene. Mice immunized with HPV16 VLP coated microneedles generated robust neutralizing antibody responses and were protected from HPV16 challenge. Microneedle arrays coated with HPV16-M/M2 or HPV16-F protein (genes of RSV) were then tested and dose-dependent HPV and F-specific antibody responses were detected post-immunization, and M/M2-specific T-cell responses were detected post RSV challenge, respectively. HPV16 PsV-F immunized mice were fully protected from challenge with HPV16 PsV and had reduced RSV viral load in lung and nose upon intranasal RSV challenge. In summary, HPV16 PsV-encapsidated DNA delivered by microneedles induced neutralizing antibody responses against HPV and primed for antibody and T-cell responses to RSV antigens encoded by the encapsidated plasmids. Although the immunogenicity of the DNA component was just above the dose response threshold, the HPV-specific immunity was robust. Taken together, these data suggest microneedle delivery of lyophilized HPV PsV could provide a practical, thermostable combined vaccine approach that could be developed for clinical evaluation.
منابع مشابه
Papillomavirus pseudovirus: a novel vaccine to induce mucosal and systemic cytotoxic T-lymphocyte responses.
Intestinal mucosa is a portal for many infectious pathogens. Systemic immunization, in general, does not induce a cytotoxic T-lymphocyte (CTL) response at the mucosal surface. Because papillomavirus (PV) naturally infects mucosa and skin, we determined whether PV pseudovirus, i.e., PV-like particles in which unrelated DNA plasmids are packaged, could generate specific mucosal immunity. We found...
متن کاملImproved influenza vaccination in the skin using vaccine coated microneedles.
Easy and effective vaccination methods could reduce mortality rates and morbidity due to vaccine-preventable influenza infections. In this study, we examined the use of microneedle patches to increase patient coverage through possible self-administration and enhance vaccine immunogenicity by targeted delivery to skin. We carried out a detailed study of protective immune responses after a single...
متن کاملHuman papillomavirus genotype 16 pseudovirus production and purification in HEK-293FT cells
Introduction: Human papillomavirus (HPV) is the main causative agent of cervical cancer worldwide leading to a big health problem, especially in the developing countries. Among 14 common high-risk genotypes, HPV16 accounts for more than 50% of all cervical cancers. The current prophylactic vaccines against HPV infection are based on L1 protein. Due to some drawbacks in the current vaccines such...
متن کاملMicroneedles for drug and vaccine delivery.
Microneedles were first conceptualized for drug delivery many decades ago, but only became the subject of significant research starting in the mid-1990's when microfabrication technology enabled their manufacture as (i) solid microneedles for skin pretreatment to increase skin permeability, (ii) microneedles coated with drug that dissolves off in the skin, (iii) polymer microneedles that encaps...
متن کاملDNA vaccination in the skin using microneedles improves protection against influenza.
In this study, we tested the hypothesis that DNA vaccination in the skin using microneedles improves protective immunity compared to conventional intramuscular (i.m.) injection of a plasmid DNA vaccine encoding the influenza hemagglutinin (HA). In vivo fluorescence imaging demonstrated the expression of a reporter gene delivered to the skin using a solid microneedle patch coated with plasmid DN...
متن کامل